首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   715篇
  免费   52篇
  国内免费   176篇
安全科学   76篇
废物处理   45篇
环保管理   56篇
综合类   350篇
基础理论   102篇
污染及防治   222篇
评价与监测   35篇
社会与环境   36篇
灾害及防治   21篇
  2023年   16篇
  2022年   49篇
  2021年   37篇
  2020年   34篇
  2019年   26篇
  2018年   31篇
  2017年   36篇
  2016年   40篇
  2015年   48篇
  2014年   41篇
  2013年   62篇
  2012年   68篇
  2011年   65篇
  2010年   45篇
  2009年   47篇
  2008年   44篇
  2007年   46篇
  2006年   28篇
  2005年   19篇
  2004年   21篇
  2003年   16篇
  2002年   25篇
  2001年   21篇
  2000年   6篇
  1999年   9篇
  1998年   12篇
  1997年   10篇
  1996年   8篇
  1995年   6篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   5篇
  1989年   2篇
  1988年   5篇
  1987年   2篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1973年   1篇
  1972年   1篇
排序方式: 共有943条查询结果,搜索用时 15 毫秒
31.
本文主要报道了一种用于染料废水处理的新型材料即新生态MnO2 及其对三种酸性媒介染料染色废水的脱色作用及影响脱色效果的主要因素。研究结果表明 ,新生态MnO2 对酸性媒介染料的吸附能力很强 ,当染料浓度为2 0 0mg/L、pH <2时 ,其对酸性媒介黑T、酸性媒介绿G和酸性媒介黄GG的脱色率分别达 98.2 %、94.5 %和 96 .4%。染料吸附效果受体系pH值、MnO2 投加量、吸附时间及温度等因素的影响 ,其中pH值是最主要的影响因素。新生态MnO2 对酸性媒介黄GG的吸附作用符合Langmuir吸附等温式  相似文献   
32.
The main objective of this study was to investigate the chemical characteristics of post-harvest biomass burning aerosols from field burning of barley straw in late spring and rice straw in late fall in rural areas of Korea. A 12-hr integrated intensive sampling of particulate matter (PM) with an aerodynamic diameter less than or equal to 10 microm (PM10) and PM with an aerodynamic diameter less than or equal to 2.5 microm (PM2.5) biomass burning aerosols had been conducted continuously in Gwangju, Korea, during two biomass burning periods: June 4--15, 2001, and October 8--November 14, 2002. The fine and coarse particles of biomass burning aerosols were analyzed for mass and ionic, elemental, and carbonaceous species. The average fine and coarse mass concentrations of biomass burning aerosols were, respectively, 129.6 and 24.2 microg/m3 in June 2001 and 47.1 and 33.2 microg/m3 in October--November 2002. An exceptionally high PM2.5 concentration of 157.8 microg/m3 was observed during biomass burning events under stagnant atmospheric conditions. In the fine mode, chlorine and potassium were unusually rich because of the high content of semi-arid vegetation. Both organic carbon (OC) and elemental carbon increased during the biomass burning periods, with the former exhibiting a higher abundance. PM from the open field burning of agricultural waste has an adverse impact on local air quality and regional climate.  相似文献   
33.
ABSTRACT

Ultrafine particles (UFPs) pose a human health risk as they can penetrate deep into the respiratory system. The Harvard supersite in Boston, MA provides one of the longest time series of UFP concentrations. This study examined the hypothesis that long-term reductions in PM2.5 mass and sulfur have influenced UFP trends by limiting the ability of UFPs to coagulate onto the accumulation mode via polydisperse coagulation with larger particles. The study used Generalized Additive Models (GAMs) to assess whether changes in PM2.5 mass and sulfur concentrations resulted in smaller than expected (assuming no change in PM2.5 mass or sulfur) decreases in daily UFP trends over the 20-year period from 1999 to 2018. The impact of PM2.5 mass and sulfur changes were represented as UFP penalties. Bootstrapping was applied to calculate standard errors for the different trend and penalty estimates. Results showed that PM2.5 mass and sulfur concentrations declined significantly over the study period. The analysis found an estimated 7.3% (95% CI: 3.5, 11.1%) UFP penalty due to long-term PM2.5 mass trends, and a 9.9% (95% CI: 6.2, 13.7%) UFP penalty due to long-term sulfur trends. Findings from this study suggest that future UFP control efforts should account for the role of PM2.5 mass and sulfur changes.  相似文献   
34.
Spatial distribution of chlorinated hydrocarbons [chlorinated pesticides (CPs) and polychlorinated biphenyls (PCBs)] and polycyclic aromatic hydrocarbons (PAHs) was measured in riverine and estuarine sediment samples from Pearl River Delta, China, collected in 1997. Concentrations of CPs of the riverine sediment samples range from 12 to 158 ng/g, dry weight, while those of PCBs range from 11 to 486 ng/g. The CPs concentrations of the estuarine sediment samples are in the range 6-1658 ng/g, while concentrations of PCBs are in the range 10-339 ng/g. Total PAH concentration ranges from 1168 to 21,329 ng/g in the riverine sediment samples, whereas the PAH concentration ranges from 323 to 14,812 ng/g in the sediment samples of the Estuary. Sediment samples of the Zhujiang River and Macao harbor around the Estuary show the highest concentrations of CPs, PCBs, and PAHs. Possible factors affecting the distribution patterns are also discussed based on the usage history of the chemicals, hydrologic condition, and land erosion due to urbanization processes. The composition of PAHs is investigated and used to assess petrogenic, combustion and naturally derived PAHs of the sediment samples of the Pearl River Delta. In addition, the concentrations of a number of organic compounds of the Pearl River Delta samples indicate that sediments of the Zhujiang river and Macao harbor are most likely to pose biological impairment.  相似文献   
35.
铁屑去除酸法地浸采铀地下水中硝酸盐的试验研究   总被引:1,自引:0,他引:1  
在酸法地浸采铀过程中,硝酸及硝酸盐的广泛使用使硝酸盐在地下不断累积并扩散到地下水中,这给矿区地下水造成了一定程度的污染.本试验以铁屑为还原剂,对该地下水中NO3--N的去除进行了批试验和动态试验研究.试验结果表明,铁屑可有效去除地下水中的NO3--N,其去除率随pH值的降低而逐渐升高;溶液中共存的Ca2 、Mg2 对NO3--N的去除影响不大,而SO42-、HCO3-的存在可明显降低NO3--N去除率;铁屑最佳投加量为120 g/L,铁炭最佳体积比为1∶1;二级柱可以明显提高柱子的稳定运行时间,在55 h内NO3--N去除率可保持在93%以上,去除效果较好.  相似文献   
36.
The obvious disadvantages of biotrickling filters (BTFs) are the long start-up time and low removal efficiency (RE) when treating refractory hydrophobic volatile organic compounds (VOCs), which limits its industrial application. It is worthwhile to investigate how to reduce the start-up period of the BTF for treating hydrophobic VOCs. Here, we present the first study to evaluate the strategy of toluene induction combined with toluene-styrene synchronous acclimatization during start-up in a laboratory-scale BTF inoculated with activated sludge for styrene removal, as well as the effects of styrene inlet concentration (0.279 to 2.659 g·m?3), empty bed residence time (EBRT) (i.e., 136, 90, 68, 45, 34 sec), humidity (7.7% to 88.9%), and pH (i.e., 4, 3, 2.5, 2) on the performance of the BTF system. The experiments were carried out under acidic conditions (pH 4.5) to make fungi dominant in the BTF. The start-up period for styrene in the BTF was shortened to about 28 days. A maximum elimination capacity (ECmax) of 126 g·m?3·hr?1 with an RE of 80% was attained when styrene inlet loading rate (ILR) was below 180 g·m?3·hr?1. The highest styrene RE(s) [of BTF] that could be achieved were 95% and 93.4%, respectively, for humidity of 7.7% and at pH 2. A single dominant fungal strain was isolated and identified as Candida palmioleophila strain MA-M11 based on the 26S ribosomal RNA gene. Overall, the styrene induction with the toluene-styrene synchronous acclimatization could markedly reduce the start-up period and enhance the RE of styrene. The BTF dominated by fungi exhibited good performance under low pH and humidity and great potential in treating styrene with higher inlet concentrations.

Implications: The application of the toluene induction combined with toluene-styrene synchronous acclimatization demonstrated to be a promising approach for the highly efficient removal of styrene. The toluene induction can accelerate biofilm formation, and the adaptability of microorganisms to styrene can be improved rapidly by the toluene-styrene synchronous acclimatization. The integrated application of two technologies can shorten the start-up period of biotrickling filters markedly and promote its industrial application.  相似文献   

37.

The aim of this study was to investigate the influence of chemical leaching on permeability and Cd removal from fine-grained polluted soils. Column leaching experiments were conducted using two types of soils (i.e., artificially Cd-polluted loam and historically polluted silty loam). Chemical agents of CaCl2, FeCl3, citric acid, EDTA, rhamnolipid, and deionized water were used to leach Cd from the soils. Results showed that organic agents reduced permeability of both soils, and FeCl3 reduced permeability of loam soil, compared with inorganic agents and deionized water. Entrapment and deposition of colloids generated from the organic agents and FeCl3 treatments reduced the soil permeability. The peak Cd effluence from the artificially polluted loam columns was retarded. For the artificially polluted soils treated with EDTA and the historically polluted soils with FeCl3, Cd precipitates were observed at the bottom after chemical leaching. When Cd was associated with large colloid particles, the reduction of soil permeability caused Cd accumulation in deeper soil. In addition, the slow process of disintegration of soil clay during chemical leaching might result in the retardation of peak Cd effluence. These results suggest the need for caution when using chemical-leaching agents for Cd removal in fine-grained soils.

  相似文献   
38.
为控制地下综合体深基坑施工风险,提出了一种基于直觉模糊集(IFS)-动态加权的风险评价方法.从地质条件、建筑环境、岩土设计、施工方案和偶然风险5个方面分析地下综合体深基坑施工风险因素,构建了综合风险评价指标体系.采取施工风险5级划分方法,利用IFS理论确定指标风险;以偏大型正态加权函数确定指标权重,得到系统综合风险.以西安市某地下综合体深基坑施工实际为背景,进行方法应用.结果表明,该西安市地下综合体深基坑施工系统风险等级为显著风险.其中,指标"邻近建筑""地下管网"的风险等级为高度风险,"道路交通""基坑边坡稳定性""降排水实施"为显著风险,对此提出了相应的安全措施.  相似文献   
39.
Energy supply utilities release significant amounts of greenhouse gases (GHGs) into the atmosphere. It is essential to accurately estimate GHG emissions with their uncertainties, for reducing GHG emissions and mitigating climate change. GHG emissions can be calculated by an activity-based method (i.e., fuel consumption) and continuous emission measurement (CEM). In this study, GHG emissions such as CO2, CH4, and N2O are estimated for a heat generation utility, which uses bituminous coal as fuel, by applying both the activity-based method and CEM. CO2 emissions by the activity-based method are 12–19% less than that by the CEM, while N2O and CH4 emissions by the activity-based method are two orders of magnitude and 60% less than those by the CEM, respectively. Comparing GHG emissions (as CO2 equivalent) from both methods, total GHG emissions by the activity-based methods are 12–27% lower than that by the CEM, as CO2 and N2O emissions are lower than those by the CEM. Results from uncertainty estimation show that uncertainties in the GHG emissions by the activity-based methods range from 3.4% to about 20%, from 67% to 900%, and from about 70% to about 200% for CO2, N2O, and CH4, respectively, while uncertainties in the GHG emissions by the CEM range from 4% to 4.5%. For the activity-based methods, an uncertainty in the Intergovernmental Panel on Climate Change (IPCC) default net calorific value (NCV) is the major uncertainty contributor to CO2 emissions, while an uncertainty in the IPCC default emission factor is the major uncertainty contributor to CH4 and N2O emissions. For the CEM, an uncertainty in volumetric flow measurement, especially for the distribution of the volumetric flow rate in a stack, is the major uncertainty contributor to all GHG emissions, while uncertainties in concentration measurements contribute a little to uncertainties in the GHG emissions.
Implications:Energy supply utilities contribute a significant portion of the global greenhouse gas (GHG) emissions. It is important to accurately estimate GHG emissions with their uncertainties for reducing GHG emissions and mitigating climate change. GHG emissions can be estimated by an activity-based method and by continuous emission measurement (CEM), yet little study has been done to calculate GHG emissions with uncertainty analysis. This study estimates GHG emissions and their uncertainties, and also identifies major uncertainty contributors for each method.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号